




# Air conditioning





# Lowering the need for air conditioning

## Reflective surfaces / paint

Certain materials, colours and types of paint reflect more of the sun's energy and stop the underlying material from heating up.

## Solar shading

Physical barriers that blocks heat entering the building, most effective forms are automatically controlled movable shading.

## Airtight construction

Better building techniques and use of sealants around windows and doors to reduce air leakage and subsequent energy losses.

## Insulation

High R value insulation materials, slows heat from entering the building shell and better maintains internal temperatures.

## Window glazing

High-performance windows (at least double glazing) with quality seals allows entry of light while blocking excessive outdoor heat.

## Vegetation

Vegetation lowers temperatures of the local area through shading and transpiration, countering the urban heat island effect.

## AC control and monitoring

AC systems can cool specific zones and be set at highest acceptable temperature. Larger buildings can employ a central automation system.

## Maintenance & optimisation

Proper commissioning of building systems and regular maintenance checks can help guarantee peak performance and efficiency.

## Ventilation

Demand-controlled ventilation, including economizers and strategies such as night cooling, offers effective passive cooling.

## Air circulation

Fans improve airflow, disperses heat, prompts skin evaporation, increases comfort and gives the perception of up to 3°C lower temperatures.

## Internal load reduction

More efficient appliances and lighting reduce heat created within the building, reducing the overall heat load.

## Window & door contacts

Sensors integrated to AC systems that detect whether a door or window is open and adjusts settings or switches them off.

## Thermal mass

Strategic use of materials that can absorb and store heat can help maintain more consistent indoor temperatures from fluctuations outside.

## Distribution system

Water-based distribution systems are more efficient than air. Well-insulated systems, both piping and ducts, reduce energy loss.

## Passive cold transfer

Passive systems, like chilled ceilings and beams, need less energy than fan coil units or central AC.



## Geothermal or seawater

In case of central chillers: High system temperatures (cold water cycle) and low cooling water (e.g. by using geothermal energy or seawater)



# More information

## Full reports

This snapshot is based on the 2022 series of reports entitled:

### Catalogue of Technical Solutions for Sustainable Cooling in:

- Egypt
- Jordan
- Lebanon
- Türkiye

## AC technologies

- **Domestic air conditioning:** [cooltechnologies.org/sector/domestic-air-conditioning](http://cooltechnologies.org/sector/domestic-air-conditioning)
- **Commercial / industrial air conditioning:** [cooltechnologies.org/sector/commercial-industrial-air-conditioning](http://cooltechnologies.org/sector/commercial-industrial-air-conditioning)
- **Hydrocarbon technologies database:** [hydrocarbons21.com](http://hydrocarbons21.com)



Upscaling Sustainable  
Cooling



[coolupprogramme.org](http://coolupprogramme.org)



LinkedIn



Email



Newsletter



Youtube